Math 4200
Monday September 28 2.1-2.2 recap, and technical discussion of "connected" vs. "path
connected".

Announcements: Modified hw5 and early view of hw6!
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(th Due Friday October 2 at 11:59 p.m.

Do the following problems using the Theorems from section 2.1-2.2. These include the
FTC Theorem 2.1.7; Cauchy's Theorem 2.2.1 and 2.2.3; the Deformation Theorem
2.2.2 which we also call the Replacement Theorem 1in class; the Antiderivative Theorem
2.2.3 which we make rigorous in section 2.3. ™
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hw6 Due Wednesday October 7 at 11:59 p.m. (Section 2.3 is potentially on the Friday
October 9 midterm.)

Do the following problems using the Theorems and definitions from section 2.3. These
include the definitions of homotopies with fixed endpoints 2.3.6; and homotopies of
closed curves 2.3.7; the precise (homotopy) definition of simply connected 2.3.8; the
homotopy versions of the Deformation Theorem 2.3.12 and Cauchy's Theorem 2.3.14;
the rigorous Antiderivative Theorem 2.2.3 which is stated in section 2.2 but made rigrous
in section 2.3.

2.3 1, 3,5, 6, 7abc (This week show that each 'y is homotopic to a point (contractible) in
the domain of analyticity for f, so each integral is zero.), 9. In 9b write down a
homotopy from the given curve to the standard parameterization of the unit circle, in
C\{0}, to justify your work.

w6.1 Positive distance lemma: Prove that if K = C is compact, and if K = O, where
O is open, then there exists an € > 0 such that for each z € K, D(z;&) < O. This is
equivalent to Distance Lemma 1.4.21 in the text. See if you can construct a proof
without looking there first, but in any case write a proof in your own words. Recall that

there are two definitions of compact, which are equivalent in R":

(i) K < R" is compact if and only if every open cover of K has a finite subcover.
or

(ii) K = R" is compact if and only if every sequence in K has a subsequence which
converges to a point in K.

(In R” another characterization of compact is closed and bounded, but this
characterization does not generalize to metric spaces.)



Review and Summary of Chapter 2 Theorems so far, for contour integrals. I'll use the
text numbering and we'll briefly recall why each theorem is true.

Theorem 2.1.7 (Fundamental Theorem of Calculus)

Let A = C open, f: 4— C continuous, Y: [a, b] & R— C a piecewise C' curve. If
f has an analytic antiderivative in 4, i.e. F''=f, then complex line integrals only
depend on the endpoints of the curve vy, via the formula
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Theorem 2.1.9 (Path Independence Theorem)
The following are equivalent, for f: 4 — C continuous, where 4 is open and connected:

(1) 3 F:4—C suchthat F'=f on 4

(i1) Contour integrals are path independent, i.e. for all choices of initial point P and
terminal point O in 4,.
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Theorem 2.2.1 (Cauchy's Theorem) Let y be a simple closed piecewise ' contour,
and let &L be the bounded region inside of it. If f(z) is ¢! and analytic in (a domain

containing the closure of) 4, then @ P + Q l Jg Q- F A
| Jf(z) dz = 0.
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Theorem 2.2.2 (Repﬁrcement Thego e te t also calls thlsja prelzmmaryiersion of
the deformation theorem, which w dlscuss prec‘i sly in section 2.3.

Let Y Vo o Y, be non-overlapping simple closed curves such that vy is a simple closed

curve with f analytic in the region between y and Y Yo oo ¥ @S 1ndlcated below.
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Example: (similar to some hw for this week) Let 'y be the circle of radius 2 centered at
the origin (and oriented counterclockwise as usual). Find
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Combining Cauchy's Theorem and the Path Independence Theorem yields the result we
were in the midst of proving at the very end of Friday's class:

Definition Let A be an open, connected domain. Then in section 2.2, A4 is called simply
connected 1if it contains no holes. Another way to think about simply connected, which
1s closer to the precise definition in section 2.3, is that A4 is simply connected means that
every closed contour in 4 can be continuously deformed into a constant (point) contour
without ever leaving A4.
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Theorem 2.2.5 (Antiderivative Theorem) If 4 isopen and simply connected. Let
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f:A— C be analytic and C'. Then f has antiderivatives F', unique up to additive

constants.

proof: We'll use Cauch};'sl Theorem to explain heuristically why the path-independence
condition (ii) of Theorem I holds. Thus antiderivatives exist, and one way to express
them is via contour integrals as in the previous discussion:

FE)=| £(0) dt

Y

zZ .z

0
Notice how we will use the "no-holes" idea of simply-connected. This explanation is not
completely rigorous, but we'll fix that lack of rigor in section 2.3 by defining simply
connected more carefully, and also by using different techniques that don't depend on
Greens' Theorem and our heuristic pictures of what contours look like.
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Example (also relates to alternate way of doing one of the hw exercises due last Friday)
Which of the domains below are connected? Which are simply connected? Discuss
whether it is possible to define log(z) as an analytic (single-valued) function on each of

the domains:
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Appendix: Connected domains, path connected domains, simply connected domains:
Some Math 3220/Chapter 1.4 analysis background material we need now:

Recall that a domain 4 < C is called connected iff there is no disconnection of 4 into
disjoint (relatively) open and non-empty subsets U, V i.e. such that

A=UUV

UNr=g.
If we restrict to open domains A4, then subsets U, V' that are relatively open are actually
open.

There is a related definition:
Definition A subset A < C is called path connected iff ¥ P, Q € A, there exists a
continuous path y: [a, b]— 4 such that y(a) =P, y(b) = Q.

Theorem Let 4 S C be open. Then A is connected if and only if A4 is path connected.

: : : : 1 :
Furthermore, if A4 is connected then there are piecewise C paths connecting all

possible pairs of points in 4. (Analogous theorem holds in R".)
proof: = : Let A be connected and open. We will show it is path connected, with

piecewise C : paths. Pick any base point z, € 4. Define U to be the set of points that

can be connected to z, with a piecewise c' path. U is non-empty since D(zo; r) cU
as long as r is small enough so that the disk is in 4. In fact, for all z € D(zo; r) we

can use the straight-line paths
Y(1) =z, + t(z—zo), 0<r<1
to connect z, to z.
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The proof that U is open is analogous: Let z € U and let y be a piecewise c' path
connecting z, to z. Then for w € D(z, r) & 4 and

V() =z+t(w—=z), 0<r<1

the combined path y + 1f is a piecewise c' path connecting z, to w. Thus U is open.
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But the complement V' := A4 \ U is open by a similar argument: If J is non-empty, let

z, €V, D(zl; r) S A. Then D(zl, r) c V as well, since if 3z & UN D(zl;r) there

: : : 1 .
is a piecewise C' path y from z; to z, and letting

'yz(t) =z+ z‘(z1 —z), 0<¢r<1,
the path v + Y, would connect z, to z,. Thus, since 4 is connected, we must have that

V=4 \ U is empty.
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path connected implies connected:

Let 4 be path connected. Let A=U U V with U, V open, U non-empty, and

UNV=g. We will show V is empty. If not, pick P € U, Q € V, and let
v:la, b]—>C

be a continuous path connecting P to O, i.e. y(a) =P, y(b)=0Q. Let T € [a, b] be
defined by

7= sup{t € [a, b] | y([a, 1]) € U}

Because U is open, T > a. Because V isopen, T < b. Butif a < T < b then y(T) is
in neither U nor V: If y(T) € U then by continuity and U open, there exists & > 0 so
that ([T, T+ 8) = U, hence y([a, T+ 8) S U, contradicting the definition of 7.
Similarly, if y(7) € V, continuity of y and 7 open implies there exists 0 > 0 so that
Y([T— 8, T] = V, another contradiction. Thus T can't exist, and ¥ must be empty.
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